Show simple item record

dc.contributor.authorHan, Noel H.
dc.contributor.authorLu, Tsung-Ju
dc.contributor.authorChen, Kevin C.
dc.contributor.authorWalsh, Michael P.
dc.contributor.authorTrusheim, Matthew E
dc.contributor.authorDe Santis, Lorenzo
dc.contributor.authorBersin, Eric Alexander
dc.contributor.authorHarris, Isaac B.
dc.contributor.authorMouradian, Sara L
dc.contributor.authorChristen, Ian R.
dc.contributor.authorEnglund, Dirk R.
dc.date.accessioned2021-02-03T19:31:12Z
dc.date.available2021-02-03T19:31:12Z
dc.date.issued2020-07
dc.identifier.issn0028-0836
dc.identifier.urihttps://hdl.handle.net/1721.1/129652
dc.description.abstractA central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits1. Colour centres in diamond have emerged as leading solid-state ‘artificial atom’ qubits2,3 because they enable on-demand remote entanglement4, coherent control of over ten ancillae qubits with minute-long coherence times5 and memory-enhanced quantum communication6. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of ‘quantum microchiplets’—diamond waveguide arrays containing highly coherent colour centres—on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters7,8 and general-purpose quantum processors.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Contract DE-NA-0003525)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award DMR-1419807)en_US
dc.description.sponsorshipUnited States. Air Force Research Laboratory. RITA program (FA8750-16-2-0141)en_US
dc.description.sponsorshipUnited States. Department of Energy. Photonics at Thermodynamic Limits’ Energy Frontier Research Center (Grant DE-SC0019140)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41586-020-2441-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleLarge-scale integration of artificial atoms in hybrid photonic circuitsen_US
dc.typeArticleen_US
dc.identifier.citationWan, Noel H. et al. “Large-scale integration of artificial atoms in hybrid photonic circuits.” Nature, 583, 7815 (July 2020): 226–231 © 2020 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalNatureen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-11T18:20:21Z
dspace.orderedauthorsWan, NH; Lu, TJ; Chen, KC; Walsh, MP; Trusheim, ME; De Santis, L; Bersin, EA; Harris, IB; Mouradian, SL; Christen, IR; Bielejec, ES; Englund, Den_US
dspace.date.submission2020-12-11T18:20:27Z
mit.journal.volume583en_US
mit.journal.issue7815en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record