Show simple item record

dc.contributor.authorKang, Peter K.
dc.contributor.authorLei, Qinghua
dc.contributor.authorDentz, Marco
dc.contributor.authorJuanes, Ruben
dc.date.accessioned2021-02-03T21:30:21Z
dc.date.available2021-02-03T21:30:21Z
dc.date.issued2019-05
dc.date.submitted2019-04
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/1721.1/129664
dc.description.abstractWe investigate the effects of geological stress on fluid flow and tracer transport in natural fracture networks. We show the emergence of non-Fickian (anomalous) transport from the interplay among fracture network geometry, aperture heterogeneity, and geological stress. In this study, we extract the fracture network geometry from the geological map of an actual rock outcrop, and we simulate the geomechanical behavior of fractured rock using a hybrid finite-discrete element method. We analyze the impact of stress on the aperture distribution, fluid flow field, and tracer transport properties. Both stress magnitude and orientation have strong effects on the fracture aperture field, which in turn affects fluid flow and tracer transport through the system. We observe that stress anisotropy may cause significant shear dilation along long, curved fractures that are preferentially oriented to the stress loading. This, in turn, induces preferential flow paths and anomalous early arrival of tracers. An increase in stress magnitude enhances aperture heterogeneity by introducing more small apertures, which exacerbates late-time tailing. This effect is stronger when there is higher heterogeneity in the initial aperture field. To honor the flow field with strong preferential flow paths, we extend the Bernoulli Continuous Time Random Walk model to incorporate dual velocity correlation length scales. The proposed upscaled transport model captures anomalous transport through stressed fracture networks and agrees quantitatively with the high-fidelity numerical simulations.en_US
dc.description.sponsorshipUS Department of Energy (Grant DE-SC0018357)en_US
dc.language.isoen
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1029/2019wr024944en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleStress‐Induced Anomalous Transport in Natural Fracture Networksen_US
dc.typeArticleen_US
dc.identifier.citationKang, Peter K. et al. "Stress‐Induced Anomalous Transport in Natural Fracture Networks." Water Resources Research 55, 5 (May 2019): 4163-4185 © 2019 American Geophysical Unionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.relation.journalWater Resources Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-05-27T19:50:56Z
dspace.date.submission2020-05-27T19:50:59Z
mit.journal.volume55en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record