MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations

Author(s)
Arbabi, Hassan
Thumbnail
Download11837_2020_4399_ReferencePDF.pdf (3.349Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The data-driven discovery of partial differential equations (PDEs) consistent with spatiotemporal data is experiencing a rebirth in machine learning research. Training deep neural networks to learn such data-driven partial differential operators requires extensive spatiotemporal data. For learning coarse-scale PDEs from computational fine-scale simulation data, the training data collection process can be prohibitively expensive. We propose to transformatively facilitate this training data collection process by linking machine learning (here, neural networks) with modern multiscale scientific computation (here, equation-free numerics). These equation-free techniques operate over sparse collections of small, appropriately coupled, space-time subdomains (“patches”), parsimoniously producing the required macro-scale training data. Our illustrative example involves the discovery of effective homogenized equations in one and two dimensions, for problems with fine-scale material property variations. The approach holds promise towards making the discovery of accurate, macro-scale effective materials PDE models possible by efficiently summarizing the physics embodied in “the best” fine-scale simulation models available.
Date issued
2020-10-29
URI
https://hdl.handle.net/1721.1/129683
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
JOM
Publisher
Springer US
Citation
Arbab, Hassan et al. “Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations.” JOM, 72 (October 2020): 4444–4457 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0098-4558

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.