Show simple item record

dc.contributor.authorKaspar, Alexandre
dc.contributor.authorOh, Taehyun
dc.contributor.authorMakatura, Liane
dc.contributor.authorKellnhofer, Petr
dc.contributor.authorMatusik, Wojciech
dc.date.accessioned2021-02-08T23:09:06Z
dc.date.available2021-02-08T23:09:06Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/129718
dc.description.abstractMotivated by the recent potential of mass customization brought by whole-garment knitting machines, we introduce the new problem of automatic machine instruction generation using a single image of the desired physical product, which we apply to machine knitting. We propose to tackle this problem by directly learning to synthesize regular machine instructions from real images. We create a cured dataset of real samples with their instruction counterpart and propose to use synthetic images to augment it in a novel way. We theoretically motivate our data mixing framework and show empirical results suggesting that making real images look more synthetic is beneficial in our problem setup.en_US
dc.language.isoen
dc.publisherProceedings of Machine Learning Researchen_US
dc.relation.isversionofhttp://proceedings.mlr.press/v97/kaspar19a.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNeural inverse knitting: From images to manufacturing instructionsen_US
dc.typeArticleen_US
dc.identifier.citationKaspar, Alexandre et al. "Neural inverse knitting: From images to manufacturing instructions." ICML 2019: 36th International Conference on Machine Learning, June, 2019, Long Beach, California, Proceedings of Machine Learning Research, 2019. © 2019 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalICML 2019: 36th International Conference on Machine Learningen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-02-05T18:42:08Z
dspace.orderedauthorsKaspar, A; Oh, TH; Makatura, L; Kellnhofer, P; Matusik, Wen_US
dspace.date.submission2021-02-05T18:42:12Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record