MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weld defect classification in radiographic images using unified deep neural network with multi-level features

Author(s)
Yang, Lu; Jiang, Hongquan
Thumbnail
Download10845_2020_1581_ReferencePDF.pdf (1.742Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Deep neural network (DNN) exhibits state-of-the-art performance in many fields including weld defect classification. However, there is still a large room for improving the classification performance over the generic DNN models. In this paper, a unified deep neural network with multi-level features is proposed for weld defect classification. Firstly, we define 11 weld defect features as inputs of our proposed classification model. Not limited to geometric and intensity features, 4 features based on the intensity contrast between weld defect and its background are proposed in this paper. Secondly, we construct a novel deep learning framework: a unified deep neural network, where multi-level features of each hidden layer are fused by the last hidden layer to predict the type of weld defect comprehensively. In addition, we investigate pre-training and fine-turning strategies to get better generalization performance with small dataset. Comparing with other classification methods like SVM and generic DNN model, our framework takes full advantage of multi-level features extracted from each hidden layer, an outstanding performance is shown where the classification accuracy is improved by 3.18% and 4.33% on the test dataset, to reach 91.36%.
Date issued
2020-05
URI
https://hdl.handle.net/1721.1/129748
Department
Massachusetts Institute of Technology. Laboratory for Manufacturing and Productivity
Journal
Journal of Intelligent Manufacturing
Publisher
Springer Science and Business Media LLC
Citation
Yang, Lu and Hongquan Jiang. "Weld defect classification in radiographic images using unified deep neural network with multi-level features." Journal of Intelligent Manufacturing 32, 2 (May 2020): 459–469 © 2020 Springer Science Business Media, LLC, part of Springer Nature
Version: Author's final manuscript
ISSN
0956-5515
1572-8145

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.