MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Causal Holography of Traversing Flows

Author(s)
Katz, Gabriel
Thumbnail
Download10884_2020_9910_ReferencePDF.pdf (Embargoed until: 2021-11-18, 1011.Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study smooth traversing vector fields v on compact manifolds X with boundary. A traversing v admits a Lyapunov function f:X→R such that df(v)>0. We show that the trajectory spaces T(v) of traversally generic v-flows are Whitney stratified spaces, and thus admit triangulations amenable to their natural stratifications. Despite being spaces with singularities, T(v) retain some residual smooth structure of X. Let F(v) denote the oriented 1-dimensional foliation on X, produced by a traversing v-flow. With the help of a boundary generic v, we divide the boundary ∂X of X into two complementary compact manifolds, ∂+X(v) and ∂−X(v). Then, for a traversing v, we introduce the causality map Cv:∂+X(v)→∂−X(v). Our main result claims that, for boundary generic traversing vector fields v, the causality map Cv allows for a reconstruction of the pair (X,F(v)), up to a homeomorphism Φ:X→X such that Φ|∂X=id∂X. In other words, for a massive class of ODEs, we show that the topology of their solutions, satisfying a given boundary value problem, is rigid. We call these results “holographic” since the (n+1)-dimensional X and the un-parameterized dynamics of the v-flow are captured by a single map Cv between two n-dimensional screens, ∂+X(v) and ∂−X(v). This holography of traversing flows has numerous applications to the dynamics of general flows. Some of them are described in the paper. Others, are just outlined.
Date issued
2020-11-18
URI
https://hdl.handle.net/1721.1/129783
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Dynamics and Differential Equations
Publisher
Springer US
Citation
Katz, Gabriel. “Causal Holography of Traversing Flows.” Journal of Dynamics and Differential Equations, 33 (November 2020): 235-274 © 2020 The Author
Version: Author's final manuscript
ISSN
1572-9222
1040-7294

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.