Causal Holography of Traversing Flows
Author(s)
Katz, Gabriel
Download10884_2020_9910_ReferencePDF.pdf (Embargoed until: 2021-11-18, 1011.Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We study smooth traversing vector fields v on compact manifolds X with boundary. A traversing v admits a Lyapunov function f:X→R such that df(v)>0. We show that the trajectory spaces T(v) of traversally generic v-flows are Whitney stratified spaces, and thus admit triangulations amenable to their natural stratifications. Despite being spaces with singularities, T(v) retain some residual smooth structure of X. Let F(v) denote the oriented 1-dimensional foliation on X, produced by a traversing v-flow. With the help of a boundary generic v, we divide the boundary ∂X of X into two complementary compact manifolds, ∂+X(v) and ∂−X(v). Then, for a traversing v, we introduce the causality map Cv:∂+X(v)→∂−X(v). Our main result claims that, for boundary generic traversing vector fields v, the causality map Cv allows for a reconstruction of the pair (X,F(v)), up to a homeomorphism Φ:X→X such that Φ|∂X=id∂X. In other words, for a massive class of ODEs, we show that the topology of their solutions, satisfying a given boundary value problem, is rigid. We call these results “holographic” since the (n+1)-dimensional X and the un-parameterized dynamics of the v-flow are captured by a single map Cv between two n-dimensional screens, ∂+X(v) and ∂−X(v). This holography of traversing flows has numerous applications to the dynamics of general flows. Some of them are described in the paper. Others, are just outlined.
Date issued
2020-11-18Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Journal of Dynamics and Differential Equations
Publisher
Springer US
Citation
Katz, Gabriel. “Causal Holography of Traversing Flows.” Journal of Dynamics and Differential Equations, 33 (November 2020): 235-274 © 2020 The Author
Version: Author's final manuscript
ISSN
1572-9222
1040-7294