MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A canonical framework for modeling elasto-viscoplasticity in complex fluids

Author(s)
Dimitriou, Christopher J; McKinley, Gareth H
Thumbnail
DownloadSubmitted version (1.908Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
A comprehensive framework for modeling elasto-viscoplasticity in complex fluids is discussed. It is based on the plasticity mechanism of kinematic hardening, which is widely accepted in solid mechanics and accounts for transient yielding processes. We discuss a simple one dimensional variant of the model, as well as a fully three-dimensional, frame-invariant and thermodynamically admissible version of the model. Predictions for several canonical rheometric test protocols are provided. We also discuss possible extensions to account for additional rheological complexities exhibited by real fluids, such as thixotropy, nonlinear elasticity and normal stress differences. We find that this framework has several advantages over the more commonly used elastic Bingham-like or elastic Herschel Bulkley models for describing elasto-viscoplasticity. First, the model can account for behavior over a much wider range of viscometric test conditions. Second, it eliminates the flow/no flow criterion inherent in Bingham-like constitutive laws, which frequently requires regularization. Third, it is a flexible framework and allows for implementation of additional complexities, including thixotropic behavior and other nonlinear rheological features.
Date issued
2019-03
URI
https://hdl.handle.net/1721.1/129784
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Non-Newtonian Fluid Mechanics
Publisher
Elsevier BV
Citation
Dimitriou, Christopher J. and Gareth H. McKinley. "A canonical framework for modeling elasto-viscoplasticity in complex fluids" Journal of Non-Newtonian Fluid Mechanics 265 (March 2019): 116-132. © 2018 Elsevier B.V.
Version: Original manuscript
ISSN
0377-0257

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.