Show simple item record

dc.contributor.authorVyas, Nikhil
dc.contributor.authorWilliams, Ryan
dc.date.accessioned2021-02-17T19:57:55Z
dc.date.available2021-02-17T19:57:55Z
dc.date.issued2021-01
dc.identifier.issn1076-9757
dc.identifier.urihttps://hdl.handle.net/1721.1/129796
dc.description.abstractMultiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2[superscript n(1-1/O(k))] time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2[superscript n(1-f(k)/k)] time for any unbounded function f. This hypothesis has been called the "Super-Strong ETH", modelled after the ETH and the Strong ETH.en_US
dc.description.sponsorshipNSF (Grants CCF-1741615 and CCF-1909429)en_US
dc.publisherAI Access Foundationen_US
dc.relation.isversionofhttps://doi.org/10.1613/jair.1.11859en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceJournal of Arti cial Intelligence Research (JAIR)en_US
dc.titleOn Super Strong ETHen_US
dc.typeArticleen_US
dc.identifier.citationVyas, Nikhil and Ryan Williams. "On Super Strong ETH." Journal of Artificial Intelligence Research 70 (January 2021): 473-495 © 2021 AI Access Foundationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalJournal of Artificial Intelligence Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-02-11T16:24:14Z
mit.journal.volume70en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record