| dc.contributor.author | Hartono, Noor Titan Putri | |
| dc.contributor.author | Thapa, Janak | |
| dc.contributor.author | Tiihonen, Armi | |
| dc.contributor.author | Oviedo, Felipe | |
| dc.contributor.author | Batali, Clio | |
| dc.contributor.author | Yoo, Jason J.(Jason Jungwan) | |
| dc.contributor.author | Liu, Zhe | |
| dc.contributor.author | Li, Ruipeng | |
| dc.contributor.author | Marrón, David Fuertes | |
| dc.contributor.author | Bawendi, Moungi G | |
| dc.contributor.author | Buonassisi, Tonio | |
| dc.contributor.author | Sun, Shijing | |
| dc.date.accessioned | 2021-02-17T21:04:56Z | |
| dc.date.available | 2021-02-17T21:04:56Z | |
| dc.date.issued | 2020-08 | |
| dc.date.submitted | 2020-01 | |
| dc.identifier.issn | 2041-1723 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/129799 | |
| dc.description.abstract | Environmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite absorber, called the capping layer. In this study, a machine-learning framework is presented to optimize this layer. We featurize 21 organic halide salts, apply them as capping layers onto methylammonium lead iodide (MAPbI₃) films, age them under accelerated conditions, and determine features governing stability using supervised machine learning and Shapley values. We find that organic molecules’ low number of hydrogen-bonding donors and small topological polar surface area correlate with increased MAPbI₃ film stability. The top performing organic halide, phenyltriethylammonium iodide (PTEAI), successfully extends the MAPbI₃ stability lifetime by 4 ± 2 times over bare MAPbI₃ and 1.3 ± 0.3 times over state-of-the-art octylammonium bromide (OABr). Through characterization, we find that this capping layer stabilizes the photoactive layer by changing the surface chemistry and suppressing methylammonium loss. | en_US |
| dc.description.sponsorship | NSF (Award DMR-1419807) | en_US |
| dc.description.sponsorship | NSF (Grant CBET-1605547) | en_US |
| dc.description.sponsorship | Skoltech (Grant 1913/R) | en_US |
| dc.description.sponsorship | DOE (Award DE-EE0007535) | en_US |
| dc.description.sponsorship | ISN (Grant W911NF-13-D-0001) | en_US |
| dc.description.sponsorship | NASA (Grant NNX16AM70H) | en_US |
| dc.language.iso | en | |
| dc.publisher | Springer Science and Business Media LLC | en_US |
| dc.relation.isversionof | 10.1038/s41467-020-17945-4 | en_US |
| dc.rights | Creative Commons Attribution 4.0 International license | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Nature | en_US |
| dc.title | How machine learning can help select capping layers to suppress perovskite degradation | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Hartono, Noor Titan Putri et al. "How machine learning can help select capping layers to suppress perovskite degradation." Nature Communications 11, 1 (August 2020): 4172. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
| dc.relation.journal | Nature Communications | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2020-09-14T17:28:51Z | |
| dspace.date.submission | 2020-09-14T17:28:54Z | |
| mit.journal.volume | 11 | en_US |
| mit.journal.issue | 1 | en_US |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Complete | |