Show simple item record

dc.contributor.authorHartono, Noor Titan Putri
dc.contributor.authorThapa, Janak
dc.contributor.authorTiihonen, Armi
dc.contributor.authorOviedo, Felipe
dc.contributor.authorBatali, Clio
dc.contributor.authorYoo, Jason J.(Jason Jungwan)
dc.contributor.authorLiu, Zhe
dc.contributor.authorLi, Ruipeng
dc.contributor.authorMarrón, David Fuertes
dc.contributor.authorBawendi, Moungi G
dc.contributor.authorBuonassisi, Tonio
dc.contributor.authorSun, Shijing
dc.date.accessioned2021-02-17T21:04:56Z
dc.date.available2021-02-17T21:04:56Z
dc.date.issued2020-08
dc.date.submitted2020-01
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/129799
dc.description.abstractEnvironmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite absorber, called the capping layer. In this study, a machine-learning framework is presented to optimize this layer. We featurize 21 organic halide salts, apply them as capping layers onto methylammonium lead iodide (MAPbI₃) films, age them under accelerated conditions, and determine features governing stability using supervised machine learning and Shapley values. We find that organic molecules’ low number of hydrogen-bonding donors and small topological polar surface area correlate with increased MAPbI₃ film stability. The top performing organic halide, phenyltriethylammonium iodide (PTEAI), successfully extends the MAPbI₃ stability lifetime by 4 ± 2 times over bare MAPbI₃ and 1.3 ± 0.3 times over state-of-the-art octylammonium bromide (OABr). Through characterization, we find that this capping layer stabilizes the photoactive layer by changing the surface chemistry and suppressing methylammonium loss.en_US
dc.description.sponsorshipNSF (Award DMR-1419807)en_US
dc.description.sponsorshipNSF (Grant CBET-1605547)en_US
dc.description.sponsorshipSkoltech (Grant 1913/R)en_US
dc.description.sponsorshipDOE (Award DE-EE0007535)en_US
dc.description.sponsorshipISN (Grant W911NF-13-D-0001)en_US
dc.description.sponsorshipNASA (Grant NNX16AM70H)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-020-17945-4en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleHow machine learning can help select capping layers to suppress perovskite degradationen_US
dc.typeArticleen_US
dc.identifier.citationHartono, Noor Titan Putri et al. "How machine learning can help select capping layers to suppress perovskite degradation." Nature Communications 11, 1 (August 2020): 4172.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-14T17:28:51Z
dspace.date.submission2020-09-14T17:28:54Z
mit.journal.volume11en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record