Linear stability of slowly rotating Kerr black holes
Author(s)
Hintz, Peter
Download222_2020_1002_ReferencePDF.pdf (1.099Mb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We prove the linear stability of slowly rotating Kerr black holes as solutions of the Einstein vacuum equations: linearized perturbations of a Kerr metric decay at an inverse polynomial rate to a linearized Kerr metric plus a pure gauge term. We work in a natural wave map/DeTurck gauge and show that the pure gauge term can be taken to lie in a fixed 7-dimensional space with a simple geometric interpretation. Our proof rests on a robust general framework, based on recent advances in microlocal analysis and non-elliptic Fredholm theory, for the analysis of resolvents of operators on asymptotically flat spaces. With the mode stability of the Schwarzschild metric as well as of certain scalar and 1-form wave operators on the Schwarzschild spacetime as an input, we establish the linear stability of slowly rotating Kerr black holes using perturbative arguments; in particular, our proof does not make any use of special algebraic properties of the Kerr metric. The heart of the paper is a detailed description of the resolvent of the linearization of a suitable hyperbolic gauge-fixed Einstein operator at low energies. As in previous work by the second and third authors on the nonlinear stability of cosmological black holes, constraint damping plays an important role. Here, it eliminates certain pathological generalized zero energy states; it also ensures that solutions of our hyperbolic formulation of the linearized Einstein equations have the stated asymptotics and decay for general initial data and forcing terms, which is a useful feature in nonlinear and numerical applications.
Date issued
2020-10-01Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Inventiones mathematicae
Publisher
Springer Berlin Heidelberg
Citation
Häfner, Dietrich et al. “Linear stability of slowly rotating Kerr black holes.” Inventiones mathematicae, 223 (October 2020): 1227–1406 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0020-9910