MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Etingof’s conjecture for quantized quiver varieties

Author(s)
Bezrukavnikov, Roman
Thumbnail
Download222_2020_1007_ReferencePDF.pdf (140.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We compute the number of finite dimensional irreducible modules for the algebras quantizing Nakajima quiver varieties. We get a lower bound for all quivers and vectors of framing. We provide an exact count in the case when the quiver is of finite type or is of affine type and the framing is the coordinate vector at the extending vertex. The latter case precisely covers Etingof’s conjecture on the number of finite dimensional irreducible representations for Symplectic reflection algebras associated to wreath-product groups. We use several different techniques, the two principal ones are categorical Kac–Moody actions and wall-crossing functors.
Date issued
2020-10-23
URI
https://hdl.handle.net/1721.1/129811
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Inventiones mathematicae
Publisher
Springer Berlin Heidelberg
Citation
Bezrukavnikov, Roman; Losev, Ivan. “Etingof’s conjecture for quantized quiver varieties.” Inventiones mathematicae, 223 (October 2020): 1097–1226 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0020-9910

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.