MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Covariate-Adaptive Optimization in Online Clinical Trials

Author(s)
Bertsimas, Dimitris J; Korolko, Nikita (Nikita E.); Weinstein, Alexander Michael
Thumbnail
DownloadAccepted version (1.729Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The decision of how to allocate subjects to treatment groups is of great importance in experimental clinical trials for novel investigational drugs, a multibillion-dollar industry. Statistical power, the ability of an experiment to detect a positive treatment effect when one exists, depends in part on the similarity of the groups in terms of measurable covariates that affect the treatment response. We present a novel algorithm for online allocation that leverages robust mixed-integer optimization. In all tested scenarios, the proposed method yields statistical power at least as high as, and sometimes significantly higher than, state-of-the-art covariate-adaptive randomization approaches. We present a setting in which our algorithm achieves a desired level of power at a sample size 25%-. smaller than that required with randomization-based approaches. Correspondingly, we expect that our covariate-adaptive optimization approach could substantially reduce both the duration and operating costs of clinical trials in many commonly observed settings while maintaining computational efficiency and protection against experimental bias.
Date issued
2019-05
URI
https://hdl.handle.net/1721.1/129812
Department
Sloan School of Management
Journal
Operations Research
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Bertsimas, Dimitris et al. “Covariate-Adaptive Optimization in Online Clinical Trials.” Operations Research 67, 4 (May 2019): 905-1208 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
0030-364X
1526-5463

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.