Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions
Author(s)
Balakrishnan, Guha; Dalca, Adrian Vasile; Zhao, Amy (Xiaoyu Amy); Guttag, John V; Durand, Frédo; Freeman, William T; ... Show more Show less
DownloadSubmitted version (2.073Mb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We introduce visual deprojection: The task of recovering an image or video that has been collapsed along a dimension. Projections arise in various contexts, such as long-exposure photography, where a dynamic scene is collapsed in time to produce a motion-blurred image, and corner cameras, where reflected light from a scene is collapsed along a spatial dimension because of an edge occluder to yield a 1D video. Deprojection is ill-posed - often there are many plausible solutions for a given input. We first propose a probabilistic model capturing the ambiguity of the task. We then present a variational inference strategy using convolutional neural networks as functional approximators. Sampling from the inference network at test time yields plausible candidates from the distribution of original signals that are consistent with a given input projection. We evaluate the method on several datasets for both spatial and temporal deprojection tasks. We first demonstrate the method can recover human gait videos and face images from spatial projections, and then show that it can recover videos of moving digits from dramatically motion-blurred images obtained via temporal projection.
Date issued
2019-10Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the IEEE International Conference on Computer Vision
Publisher
IEEE
Citation
Balakrishnan, Guha et al. “Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions.” Paper in the Proceedings of the IEEE International Conference on Computer Vision, 2019-October, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 27 October-2 November 2019, IEEE © 2019 The Author(s)
Version: Original manuscript
ISBN
9781728148038
ISSN
1550-5499