MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Universal hinge patterns for folding strips efficiently into any grid polyhedron

Author(s)
Demaine, Erik D; Demaine, Martin L
Thumbnail
DownloadAccepted version (6.037Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We present two universal hinge patterns that enable a strip of material to fold into any connected surface made up of unit squares on the 3D cube grid—for example, the surface of any polycube. The folding is efficient: for target surfaces topologically equivalent to a sphere, the strip needs to have only twice the target surface area, and the folding stacks at most two layers of material anywhere. These geometric results offer a new way to build programmable matter that is substantially more efficient than what is possible with a square N×N sheet of material, which can fold into all polycubes only of surface area O(N) and may stack Θ(N2) layers at one point. We also show how our strip foldings can be executed by a rigid motion without collisions (albeit assuming zero thickness), which is not possible in general with 2D sheet folding. To achieve these results, we develop new approximation algorithms for milling the surface of a grid polyhedron, which simultaneously give a 2-approximation in tour length and an 8/3-approximation in the number of turns. Both length and turns consume area when folding a strip, so we build on past approximation algorithms for these two objectives from 2D milling.
Date issued
2020-08
URI
https://hdl.handle.net/1721.1/129941
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Computational Geometry: Theory and Applications
Publisher
Elsevier BV
Citation
Benbernou, Nadia M. et al. “Universal hinge patterns for folding strips efficiently into any grid polyhedron.” Computational Geometry: Theory and Applications, 89 (August 2020): 101633 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0925-7721

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.