Show simple item record

dc.contributor.authorBertsimas, Dimitris J
dc.contributor.authorCory-Wright, Ryan
dc.date.accessioned2021-02-22T21:52:59Z
dc.date.available2021-02-22T21:52:59Z
dc.date.issued2020-01
dc.date.submitted2019-12
dc.identifier.issn0167-6377
dc.identifier.urihttps://hdl.handle.net/1721.1/129965
dc.description.abstractWe study a cutting-plane method for semidefinite optimization problems, and supply a proof of the method's convergence, under a boundedness assumption. By relating the method's rate of convergence to an initial outer approximation's diameter, we argue the method performs well when initialized with a second-order cone approximation, instead of a linear approximation. We invoke the method to provide bound gaps of 0.5–6.5% for sparse PCA problems with 1000s of covariates, and solve nuclear norm problems over 500 × 500 matrices.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.orl.2019.12.003en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleOn polyhedral and second-order cone decompositions of semidefinite optimization problemsen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris and Ryan Cory-Wright. "On polyhedral and second-order cone decompositions of semidefinite optimization problems." Operations Research Letters 48, 1 (January 2020): 78-85en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.relation.journalOperations Research Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-02-05T18:05:05Z
dspace.orderedauthorsBertsimas, D; Cory-Wright, Ren_US
dspace.date.submission2021-02-05T18:05:08Z
mit.journal.volume48en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record