Data Augmentation Using Learned Transformations for One-Shot Medical Image Segmentation
Author(s)
Zhao, Amy (Xiaoyu Amy); Balakrishnan, Guha; Durand, Fredo; Guttag, John V; Dalca, Adrian Vasile
DownloadSubmitted version (4.415Mb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Image segmentation is an important task in many medical applications. Methods based on convolutional neural networks attain state-of-the-art accuracy; however, they typically rely on supervised training with large labeled datasets. Labeling medical images requires significant expertise and time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. We present an automated data augmentation method for synthesizing labeled medical images. We demonstrate our method on the task of segmenting magnetic resonance imaging (MRI) brain scans. Our method requires only a single segmented scan, and leverages other unlabeled scans in a semi-supervised approach. We learn a model of transformations from the images, and use the model along with the labeled example to synthesize additional labeled examples. Each transformation is comprised of a spatial deformation field and an intensity change, enabling the synthesis of complex effects such as variations in anatomy and image acquisition procedures. We show that training a supervised segmenter with these new examples provides significant improvements over state-of-the-art methods for one-shot biomedical image segmentation.
Date issued
2019-06Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Zhao, Amy et al. “Data Augmentation Using Learned Transformations for One-Shot Medical Image Segmentation.” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019, Long Beach, California, Institute of Electrical and Electronics Engineers (IEEE), June 2019. © 2019 The Author(s)
Version: Original manuscript
ISBN
9781728132938
ISSN
1063-6919