MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atmospheric pressure loading in GPS positions: dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska

Author(s)
Herring, Thomas A
Thumbnail
Download190_2020_1445_ReferencePDF.pdf (9.524Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The Global Positioning System (GPS) has revolutionized the ability to monitor Earth-system processes, including Earth’s water cycle. Several analysis centers process GPS data to estimate ground-antenna positions at daily temporal resolution. Differences in processing strategies can lead to inconsistencies in coordinate-position estimates and therefore influence the analysis of crustal displacement associated with variations in atmospheric and hydrologic mass loading. Here, we compare five GPS data products produced by three processing centers: the Nevada Geodetic Laboratory, Jet Propulsion Laboratory, and UNAVCO Consortium. We find that 5 to 30% of the scatter in residual GPS time series (commonly considered noise) can be explained by atmospheric loading in the contiguous USA and Alaska, but that the percentages vary widely by data product. Positions derived using high-resolution troposphere models (e.g., ECMWF) exhibit significantly lower scatter after correcting for atmospheric loading than positions estimated using constant or slowly varying troposphere models (e.g., GPT2w). The data products also exhibit differences in seasonal deformation (commonly attributed, in large part, to fluctuations in hydrologic mass loading): median vector differences in estimated seasonal amplitude range from 0.4–1.0 mm in the vertical component and 0.1–0.3 mm in the horizontal components, or about 10–40% of the mean amplitudes of seasonal oscillation. Newer products exhibit lower total scatter and stronger correlations than older products. Network-coherent differences in estimates of seasonal deformation reveal reference-frame inconsistencies between data products. We also cross-check two independent models of atmospheric pressure loading: ESMGFZ and LoadDef.
Date issued
2020-11-18
URI
https://hdl.handle.net/1721.1/129994
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of geodesy
Publisher
Springer Berlin Heidelberg
Citation
Martens, Hilary R. et al. “Atmospheric pressure loading in GPS positions: dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska.” Journal of Geodesy, 94 (November 2020): 115 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0949-7714

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.