Show simple item record

dc.contributor.authorGuillemette, Maxime D.
dc.contributor.authorPark, Hyoungshin
dc.contributor.authorHsiao, James C.
dc.contributor.authorJain, Saloni R.
dc.contributor.authorLarson, Benjamin L.
dc.contributor.authorLanger, Robert S
dc.contributor.authorFreed, Lisa E
dc.date.accessioned2021-02-24T20:44:32Z
dc.date.available2021-02-24T20:44:32Z
dc.date.issued2010-08
dc.date.submitted2010-06
dc.identifier.issn1616-5195
dc.identifier.urihttps://hdl.handle.net/1721.1/129997
dc.description.abstractPolymer scaffolds that direct elongation and orientation of cultured cells can enable tissue engineered muscle to act as a mechanically functional unit. We combined micromolding and microablation technologies to create muscle tissue engineering scaffolds from the biodegradable elastomer poly(glycerol sebacate). These scaffolds exhibited well defined surface patterns and pores and robust elastomeric tensile mechanical properties. Cultured C2C12 muscle cells penetrated the pores to form spatially controlled engineered tissues. Scanning electron and confocal microscopy revealed muscle cell orientation in a preferential direction, parallel to micromolded gratings and long axes of microablated anisotropic pores, with significant individual and interactive effects of gratings and pore design.Micropatterning and microablation technologies were combined in the context of the biodegradable elastomer PGS to create a muscle tissue engineering scaffold. Scaffolds enabled cultured muscle cells to preferentially align in parallel to linear gratings and pore edges, with significant individual and interactive effects of surface topography and anisotropic pore design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.description.sponsorshipAmerican Recovery and Reinvestment Act - ARRA (1-R01-HL086521-01A2)en_US
dc.description.sponsorshipNIH (DE013023)en_US
dc.description.sponsorshipNSF (BES-0609182)en_US
dc.language.isoen
dc.publisherWiley-Blackwellen_US
dc.relation.isversionofhttps://dx.doi.org/10.1002/mabi.201000165en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleCombined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffoldsen_US
dc.typeArticleen_US
dc.identifier.citationGuillemette, Maxime D. et al., "Combined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffolds." Macromolecular Bioscience 10, 11 (November 2010): 1330-37 ©2010 Authorsen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.relation.journalMacromolecular Bioscienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-08-22T18:56:11Z
dspace.date.submission2019-08-22T18:56:14Z
mit.journal.volume10en_US
mit.journal.issue11en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record