MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Funnel libraries for real-time robust feedback motion planning

Author(s)
Majumdar, Anirudha; Tedrake, Russell L
Thumbnail
DownloadSubmitted version (9.800Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We consider the problem of generating motion plans for a robot that are guaranteed to succeed despite uncertainty in the environment, parametric model uncertainty, and disturbances. Furthermore, we consider scenarios where these plans must be generated in real time, because constraints such as obstacles in the environment may not be known until they are perceived (with a noisy sensor) at runtime. Our approach is to pre-compute a library of "funnels" along different maneuvers of the system that the state is guaranteed to remain within (despite bounded disturbances) when the feedback controller corresponding to the maneuver is executed. We leverage powerful computational machinery from convex optimization (sums-of-squares programming in particular) to compute these funnels. The resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot. A major advantage of the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable they are to disturbances. We demonstrate and validate our method using extensive hardware experiments on a small fixed-wing airplane avoiding obstacles at high speed (∼12 mph), along with thorough simulation experiments of ground vehicle and quadrotor models navigating through cluttered environments. To our knowledge, these demonstrations constitute one of the first examples of provably safe and robust control for robotic systems with complex nonlinear dynamics that need to plan in real time in environments with complex geometric constraints.
Date issued
2017-06
URI
https://hdl.handle.net/1721.1/130014
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
International Journal of Robotics Research
Publisher
SAGE Publications
Citation
Majumdar, Anirudha and Russ Tedrake. "Funnel libraries for real-time robust feedback motion planning." International Journal of Robotics Research 36, 8 (June 2017): 947-982 © 2017 The Author(s)
Version: Original manuscript
ISSN
0278-3649
1741-3176

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.