Show simple item record

dc.contributor.authorOk, Kyel
dc.contributor.authorLiu, Katherine Y
dc.contributor.authorFrey, Kristoffer M. (Kristoffer Martin)
dc.contributor.authorHow, Jonathan P
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2021-03-01T16:34:55Z
dc.date.available2021-03-01T16:34:55Z
dc.date.issued2019-08
dc.date.submitted2019-05
dc.identifier.isbn9781538660270
dc.identifier.isbn9781538681763
dc.identifier.issn2577-087X
dc.identifier.urihttps://hdl.handle.net/1721.1/130015
dc.description.abstractWe present Robust Object-based SLAM for High-speed Autonomous Navigation (ROSHAN), a novel approach to object-level mapping suitable for autonomous navigation. In ROSHAN, we represent objects as ellipsoids and infer their parameters using three sources of information - bounding box detections, image texture, and semantic knowledge - to overcome the observability problem in ellipsoid-based SLAM under common forward-translating vehicle motions. Each bounding box provides four planar constraints on an object surface and we add a fifth planar constraint using the texture on the objects along with a semantic prior on the shape of ellipsoids. We demonstrate ROSHAN in simulation where we outperform the baseline, reducing the median shape error by 83% and the median position error by 72% in a forward-moving camera sequence. We demonstrate similar qualitative result on data collected on a fast-moving autonomous quadrotor.en_US
dc.description.sponsorshipNASA (Award NNX15AQ50A)en_US
dc.description.sponsorshipDARPA (Contract HR0011-15-C-0110)en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/icra.2019.8794344en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRobust Object-based SLAM for High-speed Autonomous Navigationen_US
dc.typeArticleen_US
dc.identifier.citationOk, Kyel et al. "Robust Object-based SLAM for High-speed Autonomous Navigation." 2019 International Conference on Robotics and Automation, May 2019, Montreal, Canada, Institute of Electrical and Electronics Engineers, August 2019 © 2019 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journal2019 International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-28T17:42:59Z
dspace.date.submission2019-10-28T17:43:07Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record