MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reactive probabilistic programming

Author(s)
Atkinson, Eric Hamilton; Sherman, Benjamin; Carbin, Michael James
Thumbnail
DownloadAccepted version (1.255Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Synchronous modeling is at the heart of programming languages like Lustre, Esterel, or Scade used routinely for implementing safety critical control software, e.g., fly-by-wire and engine control in planes. However, to date these languages have had limited modern support for modeling uncertainty - - probabilistic aspects of the software's environment or behavior - - even though modeling uncertainty is a primary activity when designing a control system. In this paper we present ProbZelus the first synchronous probabilistic programming language. ProbZelus conservatively provides the facilities of a synchronous language to write control software, with probabilistic constructs to model uncertainties and perform inference-in-the-loop. We present the design and implementation of the language. We propose a measure-theoretic semantics of probabilistic stream functions and a simple type discipline to separate deterministic and probabilistic expressions. We demonstrate a semantics-preserving compilation into a first-order functional language that lends itself to a simple presentation of inference algorithms for streaming models. We also redesign the delayed sampling inference algorithm to provide efficient streaming inference. Together with an evaluation on several reactive applications, our results demonstrate that ProbZelus enables the design of reactive probabilistic applications and efficient, bounded memory inference.
Date issued
2020-06
URI
https://hdl.handle.net/1721.1/130049
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)
Publisher
ACM
Citation
Baudart, Guillaume et al. “Reactive probabilistic programming.” Paper in the Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2020, PLDI ’20, London UK, June 15–20, 2020, ACM: 898-912 © 2020 The Author(s)
Version: Author's final manuscript
ISBN
9781450376136
ISSN
1531-7102

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.