MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Shape and Motion Planning for Dynamic Planar Manipulation

Author(s)
Taylor, Orion Thomas; Rodriguez Garcia, Alberto
Thumbnail
DownloadAccepted version (1.978Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents a framework for optimizing both the shape and the motion of a planar rigid end-effector to satisfy a desired manipulation task. We frame this design problem as a nonlinear optimization program, where shape and motion are decision variables represented as splines. The task is represented as a series of constraints, along with a fitness metric,which force the solution to be compatible with the dynamics of frictional hard contact while satisfying the task. We illustrate the approach with the example problem of moving a disk along a desired path or trajectory, and we verify it by applying it to three classical design problems: the rolling brachistochrone, the design of teeth of involute gears, and the pitch curve of rolling cams. We conclude with a case study involving the optimization and real implementation of the shape and motion of a dynamic throwing arm.
Date issued
2017-07
URI
https://hdl.handle.net/1721.1/130051
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Robotics: Science and Systems XIII
Publisher
Robotics: Science and Systems Foundation
Citation
Taylor, Orion and Alberto Rodriguez."Optimal Shape and Motion Planning for Dynamic Planar Manipulation." Robotics: Science and Systems XIII, July 2017, Cambridge, Massachusetts, Robotics: Science and Systems Foundation, July 2017.
Version: Author's final manuscript
ISBN
9780992374730

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.