Show simple item record

dc.contributor.authorMi, Lu
dc.contributor.authorWang, Hao
dc.contributor.authorMeirovitch, Yaron
dc.contributor.authorSchalek, Richard
dc.contributor.authorTuraga, Srinivas C.
dc.contributor.authorLichtman, Jeff W.
dc.contributor.authorSamuel, Aravinthan D. T.
dc.contributor.authorShavit, Nir N.
dc.date.accessioned2021-03-08T18:25:40Z
dc.date.available2021-03-08T18:25:40Z
dc.date.issued2020-09
dc.identifier.isbn9783030597214
dc.identifier.isbn9783030597221
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/130096
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 12265).en_US
dc.description.abstractSingle-beam scanning electron microscopes (SEM) are widely used to acquire massive datasets for biomedical study, material analysis, and fabrication inspection. Datasets are typically acquired with uniform acquisition: applying the electron beam with the same power and duration to all image pixels, even if there is great variety in the pixels’ importance for eventual use. Many SEMs are now able to move the beam to any pixel in the field of view without delay, enabling them, in principle, to invest their time budget more effectively with non-uniform imaging. In this paper, we show how to use deep learning to accelerate and optimize single-beam SEM acquisition of images. Our algorithm rapidly collects an information-lossy image (e.g. low resolution) and then applies a novel learning method to identify a small subset of pixels to be collected at higher resolution based on a trade-off between the saliency and spatial diversity. We demonstrate the efficacy of this novel technique for active acquisition by speeding up the task of collecting connectomic datasets for neurobiology by up to an order of magnitude. Code is available at https://github.com/lumi9587/learning-guided-SEM.en_US
dc.description.sponsorshipNational Science Foundation (Grants IS-1607189, CCF-1563880, IOS-1452593 and NSF-1806818)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-59722-1_8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning Guided Electron Microscopy with Active Acquisitionen_US
dc.typeArticleen_US
dc.identifier.citationMi, Lu et al. "Learning Guided Electron Microscopy with Active Acquisition." MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 12265, Springer, 2020, 77-87. © 2020 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-02-04T16:14:08Z
dspace.orderedauthorsMi, L; Wang, H; Meirovitch, Y; Schalek, R; Turaga, SC; Lichtman, JW; Samuel, ADT; Shavit, Nen_US
dspace.date.submission2021-02-04T16:14:13Z
mit.journal.volume12265en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record