MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Designing complex architectured materials with generative adversarial networks

Author(s)
Mao, Yunwei; He, Qi; Zhao, Xuanhe
Thumbnail
DownloadPublished version (3.229Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Architectured materials on length scales from nanometers to meters are desirable for diverse applications. Recent advances in additive manufacturing have made mass production of complex architectured materials technologically and economically feasible. Existing architecture design approaches such as bioinspiration, Edisonian, and optimization, however, generally rely on experienced designers' prior knowledge, limiting broad applications of architectured materials. Particularly challenging is designing architectured materials with extreme properties, such as the Hashin-Shtrikman upper bounds on isotropic elasticity in an experience-free manner without prior knowledge. Here, we present an experience-free and systematic approach for the design of complex architectured materials with generative adversarial networks. The networks are trained using simulation data from millions of randomly generated architectures categorized based on different crystallographic symmetries. We demonstrate modeling and experimental results of more than 400 two-dimensional architectures that approach the Hashin-Shtrikman upper bounds on isotropic elastic stiffness with porosities from 0.05 to 0.75. ©2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/130108
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Mao, Yunwei et al., "Designing complex architectured materials with generative adversarial networks." Science Advances 6, 17 (April 2020): eaaz4169 ©2020 Authors
Version: Final published version
ISSN
2375-2548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.