MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Training for faster adversarial robustness verification via inducing Relu stability

Author(s)
Xiao, Kai Yuanqing; Tjeng, Vincent; Shafiullah, Nur Muhammad Mahi.; Mądry, Aleksander
Thumbnail
DownloadAccepted version (753.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We explore the concept of co-design in the context of neural network verification. Specifically, we aim to train deep neural networks that not only are robust to adversarial perturbations but also whose robustness can be verified more easily. To this end, we identify two properties of network models - weight sparsity and so-called ReLU stability - that turn out to significantly impact the complexity of the corresponding verification task. We demonstrate that improving weight sparsity alone already enables us to turn computationally intractable verification problems into tractable ones. Then, improving ReLU stability leads to an additional 4-13x speedup in verification times. An important feature of our methodology is its “universality,” in the sense that it can be used with a broad range of training procedures and verification approaches.
Date issued
2019-05
URI
https://hdl.handle.net/1721.1/130110
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
7th International Conference on Learning Representations, ICLR 2019
Publisher
ICLR
Citation
Xiao, Kai Y. et al. “Training for faster adversarial robustness verification via inducing Relu stability.” Paper presented at the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, Louisiana, May 6 - 9, 2019, ICLR © 2019 The Author(s)
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.