MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chromosome Intermingling: Mechanical Hotspots for Genome Regulation

Author(s)
Uhler, Caroline; Shivashankar, G.V.
Thumbnail
DownloadTCB_revised_final-June18-2017_clean.pdf (831.1Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Cells sense physical and chemical signals from their local microenvironment and transduce them to the nucleus to regulate genomic programs. In this review, we first discuss different modes of mechanotransduction to the nucleus. Then we highlight the role of the spatial organization of chromosomes for integrating these signals. In particular, we emphasize the importance of chromosome intermingling for gene regulation. We also discuss various geometric models and recent advances in microscopy and genomics that have allowed accessing these nanoscale chromosome intermingling regions. Taken together, the recent work summarized in this review culminates in the hypothesis that the chromosome intermingling regions are mechanical hotspots for genome regulation. Maintenance of such mechanical hotspots is crucial for cellular homeostasis, and alterations in them could be precursors for various cellular reprogramming events including diseases.
Date issued
2017-11
URI
https://hdl.handle.net/1721.1/130126
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Journal
Trends in Cell Biology
Publisher
Elsevier BV
Citation
Uhler, Caroline and G.V. Shivashankar. "Chromosome Intermingling: Mechanical Hotspots for Genome Regulation." Trends in Cell Biology 27, 11 (November 2017): P810-819. © 2017 Elsevier Ltd
Version: Author's final manuscript
ISSN
0962-8924

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.