MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PDDLStream: Integrating symbolic planners and blackbox samplers via optimistic adaptive planning

Author(s)
Garrett, Caelan Reed; Lozano-Pérez, Tomás; Kaelbling, Leslie P
Thumbnail
DownloadSubmitted version (2.417Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Many planning applications involve complex relationships defined on high-dimensional, continuous variables. For example, robotic manipulation requires planning with kinematic, collision, visibility, and motion constraints involving robot configurations, object poses, and robot trajectories. These constraints typically require specialized procedures to sample satisfying values. We extend PDDL to support a generic, declarative specification for these procedures that treats their implementation as black boxes. We provide domain-independent algorithms that reduce PDDLStream problems to a sequence of finite PDDL problems. We also introduce an algorithm that dynamically balances exploring new candidate plans and exploiting existing ones. This enables the algorithm to greedily search the space of parameter bindings to more quickly solve tightly-constrained problems as well as locally optimize to produce low-cost solutions. We evaluate our algorithms on three simulated robotic planning domains as well as several real-world robotic tasks.
Date issued
2020-10
URI
https://hdl.handle.net/1721.1/130316
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Citation
Garrett, Caelan Reed et al. "PDDLStream: Integrating symbolic planners and blackbox samplers via optimistic adaptive planning." Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, October 2020, Nancy, France, Association for the Advancement of Artificial Intelligence, October 2020. © 2020 Association for the Advancement of Artificial Intelligence
Version: Original manuscript
ISBN
978-1-57735-824-4
ISSN
2334-0843
2334-0835

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.