MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Are Topographic Deep Convolutional Neural Networks Better Models of the Ventral Visual Stream?

Author(s)
Jozwik, Kamila Maria; Lee, Hyo-Dong; Kanwisher, Nancy; DiCarlo, James
Thumbnail
DownloadPublished version (1.264Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 unported license https://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Neural computations along the ventral visual stream, -- which culminates in the inferior temporal (IT) cortex -- enable humans and monkeys to recognize objects quickly. Primate IT is organized topographically: nearby neurons have similar response properties. Yet the best models of the ventral visual stream - deep artificial neural networks (ANNs) – have “IT” layers that lack topography. We built Topographic Deep ANNs (TDANNs) by incorporating a proxy wiring cost alongside the standard ImageNet categorization cost in the two “IT-like” layers of AlexNet (Lee et al., 2018), by specifying that “neurons” that have similar response properties should be physically close to each other. This cost both induced topographic structure and altered tuning characteristics of model IT neurons. We presented 2560 naturalistic images to monkeys and to ANNs. We found that, relative to the base (nontopographic) model, the “neurons” in the “IT” layer of some of the TDANN models matched actual IT neurons slightly better, and the dimensionality of the TDANN “IT” neural population was much closer to that of the measured monkey IT neural population. We also found that, while TDANNs did not show a statistically significant better match to human object discrimination behavior, detailed analysis suggests a trend in that direction. Taken together, TDANNs may better capture properties of IT cortex and wiring costs might be the cause of topographic organization in primate IT.
Date issued
2019-12
URI
https://hdl.handle.net/1721.1/130332
Department
McGovern Institute for Brain Research at MIT; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
2019 Conference on Cognitive Computational Neuroscience
Publisher
Cognitive Computational Neuroscience
Citation
Jozwik, Kamila Maria et al. "Are Topographic Deep Convolutional Neural Networks Better Models of the Ventral Visual Stream?" 2019 Conference on Cognitive Computational Neuroscience, September 2019, Berlin, Germany, Cognitive Computational Neuroscience, December 2019.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.