MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance of intensive care unit severity scoring systems across different ethnicities in the USA: a retrospective observational study

Author(s)
Sarkar, Rahuldeb; Martin, Christopher; Mattie, Heather; Gichoya, Judy Wawira; Stone, David J; Celi, Leo Anthony G.; ... Show more Show less
Thumbnail
Download1-s2.0-S2589750021000224-main.pdf (798.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Background Despite wide use of severity scoring systems for case-mix determination and benchmarking in the intensive care unit (ICU), the possibility of scoring bias across ethnicities has not been examined. Guidelines on the use of illness severity scores to inform triage decisions for allocation of scarce resources, such as mechanical ventilation, during the current COVID-19 pandemic warrant examination for possible bias in these models. We investigated the performance of the severity scoring systems Acute Physiology and Chronic Health Evaluation IVa (APACHE IVa), Oxford Acute Severity of Illness Score (OASIS), and Sequential Organ Failure Assessment (SOFA) across four ethnicities in two large ICU databases to identify possible ethnicity-based bias. Methods Data from the electronic ICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care III (MIMIC-III) database, built from patient episodes in the USA from 2014–15 and 2001–12, respectively, were analysed for score performance in Asian, Black, Hispanic, and White people after appropriate exclusions. Hospital mortality was the outcome of interest. Discrimination and calibration were determined for all three scoring systems in all four groups, using area under receiver operating characteristic (AUROC) curve for different ethnicities to assess discrimination, and standardised mortality ratio (SMR) or proxy measures to assess calibration. Findings We analysed 166 751 participants (122 919 eICU-CRD and 43 832 MIMIC-III). Although measurements of discrimination were significantly different among the groups (AUROC ranging from 0·86 to 0·89 [p=0·016] with APACHE IVa and from 0·75 to 0·77 [p=0·85] with OASIS), they did not display any discernible systematic patterns of bias. However, measurements of calibration indicated persistent, and in some cases statistically significant, patterns of difference between Hispanic people (SMR 0·73 with APACHE IVa and 0·64 with OASIS) and Black people (0·67 and 0·68) versus Asian people (0·77 and 0·95) and White people (0·76 and 0·81). Although calibrations were imperfect for all groups, the scores consistently showed a pattern of overpredicting mortality for Black people and Hispanic people. Similar results were seen using SOFA scores across the two databases. Interpretation The systematic differences in calibration across ethnicities suggest that illness severity scores reflect statistical bias in their predictions of mortality.
Date issued
2021-04
URI
https://hdl.handle.net/1721.1/130358
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Harvard--MIT Program in Health Sciences and Technology. Laboratory for Computational Physiology
Journal
Lancet Digital Health
Publisher
Elsevier BV
Citation
Sarkar, Rahuldeb et al. "Performance of intensive care unit severity scoring systems across different ethnicities in the USA: a retrospective observational study." Lancet Digital Health 3, 4 (April 2021): e241-e249 © 2021 The Author(s)
Version: Final published version
ISSN
2589-7500

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.