MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deformation-induced cleaning of organically fouled membranes: Fundamentals and techno-economic assessment for spiral-wound membranes

Author(s)
Goon, Grace Swee See; Labban, Omar; Foo, Zi Hao; Zhao, Xuanhe; Lienhard, John H
Thumbnail
DownloadAccepted version (8.574Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Membrane fouling is a ubiquitous challenge in water treatment and desalination systems. Current reverse osmosis (RO) membrane cleaning technology relies on chemical processes, incurring considerable costs and generating waste streams. Here, we present a novel chemical-free membrane cleaning method applicable to commercially existing RO spiral-wound membrane modules. The method employs controlled membrane deformation through pressure modulation, which induces shear stresses at the foulant-membrane interface that lead to detachment and removal of the foulants. To investigate the effectiveness of the method, experiments on organic fouling by alginate are conducted on a flat-sheet membrane coupon followed by tests on a commercial spiral-wound module with feeds of varying fouling propensities. Cleaning durations are six-fold lower, and the experimental results demonstrate flux recoveries and cleaning efficiencies comparable to those of chemical cleaning. The experiments on the spiral-wound module indicate that this method will have applicability in industrially-relevant settings. To elucidate the underlying cleaning mechanisms, membrane deformation experiments with no flow are conducted, and in situ visualization techniques are employed for both the flat-sheet and spiral-wound modules. The results show that cleaning is caused by a reduction in shear strength at the foulant-membrane interface after cycles of repeated loading, a behavior typical of fatigue. By enabling more frequent cleanings, deformation-induced cleaning is shown to considerably lower operating costs in an economic case study while offering a more sustainable and environmentally sound solution to membrane cleaning and antifouling in desalination.
Date issued
2021-02
URI
https://hdl.handle.net/1721.1/130373
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Membrane Science
Publisher
Elsevier BV
Citation
Goon, Grace S.S. et al. "Deformation-induced cleaning of organically fouled membranes: Fundamentals and techno-economic assessment for spiral-wound membranes." Journal of Membrane Science 626 (May 2021): 119169. © 2021 Elsevier B.V.
Version: Author's final manuscript
ISSN
0376-7388

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.