Learning Longterm Representations for Person Re-Identification Using Radio Signals
Author(s)
Fan, Lijie; Li, Tianhong; Fang, Rongyao; Hristov, Rumen H.; Yuan, Yuan; Katabi, Dina; ... Show more Show less
DownloadSubmitted version (7.467Mb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Person Re-Identification (ReID) aims to recognize a person-of-interest across different places and times. Existing ReID methods rely on images or videos collected using RGB cameras. They extract appearance features like clothes, shoes, hair, etc. Such features, however, can change drastically from one day to the next, leading to inability to identify people over extended time periods. In this paper, we introduce RF-ReID, a novel approach that harnesses radio frequency (RF) signals for longterm person ReID. RF signals traverse clothes and reflect off the human body; thus they can be used to extract more persistent human-identifying features like body size and shape. We evaluate the performance of RF-ReID on longitudinal datasets that span days and weeks, where the person may wear different clothes across days. Our experiments demonstrate that RF-ReID outperforms state-of-the-art RGB-based ReID approaches for long term person ReID. Our results also reveal two interesting features: First since RF signals work in the presence of occlusions and poor lighting, RF-ReID allows for person ReID in such scenarios. Second, unlike photos and videos which reveal personal and private information, RF signals are more privacy-preserving, and hence can help extend person ReID to privacy-concerned domains, like healthcare.
Date issued
2020-08Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Fan, Lijie et al. "Learning Longterm Representations for Person Re-Identification Using Radio Signals." 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, Seattle, Washington, Institute of Electrical and Electronics Engineers, August 2020. © 2020 IEEE
Version: Original manuscript
ISBN
9781728171685
ISSN
2575-7075