Learning determinantal point processes by corrective negative sampling
Author(s)
Mariet, Zelda; Gartrell, Mike; Sra, Suvrit
DownloadPublished version (695.9Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Determinantal Point Processes (DPPs) have attracted significant interest from the machine-learning community due to their ability to elegantly and tractably model the delicate balance between quality and diversity of sets. DPPs are commonly learned from data using maximum likelihood estimation (MLE). While fitting observed sets well, MLE for DPPs may also assign high likelihoods to unobserved sets that are far from the true generative distribution of the data. To address this issue, which reduces the quality of the learned model, we introduce a novel optimization problem, Contrastive Estimation (CE), which encodes information about “negative” samples into the basic learning model. CE is grounded in the successful use of negative information in machine-vision and language modeling. Depending on the chosen negative distribution (which may be static or evolve during optimization), CE assumes two different forms, which we analyze theoretically and experimentally. We evaluate our new model on real-world datasets; on a challenging dataset, CE learning delivers a considerable improvement in predictive performance over a DPP learned without using contrastive information.
Date issued
2019-04Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence LaboratoryJournal
22nd International Conference on Artificial Intelligence and Statistics
Publisher
MLResearch Press
Citation
Mariet, Zelda et al. "Learning determinantal point processes by corrective negative sampling." 22nd International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, 89, MLResearch Pressh, 2019, 2251-2260. © 2019 The Author(s).
Version: Final published version