Show simple item record

dc.contributor.authorQiao, Bo
dc.contributor.authorMohapatra, Somesh
dc.contributor.authorLopez, Jeffrey Frank
dc.contributor.authorLeverick, Graham M.
dc.contributor.authorTatara, Ryoichi
dc.contributor.authorShibuya, Yoshiki
dc.contributor.authorJiang, Yivan
dc.contributor.authorFrance-Lanord, Arthur
dc.contributor.authorGrossman, Jeffrey C.
dc.contributor.authorGómez-Bombarelli, Rafael
dc.contributor.authorJohnson, Jeremiah A.
dc.contributor.authorShao-Horn, Yang
dc.date.accessioned2021-04-14T15:38:46Z
dc.date.available2021-04-14T15:38:46Z
dc.date.issued2020-06
dc.date.submitted2020-04
dc.identifier.issn2374-7943
dc.identifier.issn2374-7951
dc.identifier.urihttps://hdl.handle.net/1721.1/130474
dc.description.abstractMolecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)-LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG-LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acscentsci.0c00475en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titleQuantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytesen_US
dc.typeArticleen_US
dc.identifier.citationQiao, Bo et al. "Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes." ACS Central Science 6, 7 (June 2020): 1115–1128 © 2020 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalACS Central Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-07T13:57:13Z
dspace.date.submission2020-08-07T13:57:15Z
mit.journal.volume6en_US
mit.journal.issue7en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record