Impact of Remineralization Profile Shape on the Air‐Sea Carbon Balance
Author(s)
Lauderdale, Jonathan; Cael, B. B.
Download2020GL091746.pdf (476.6Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The ocean's “biological pump” significantly modulates atmospheric carbon dioxide levels. However, the complexity and variability of processes involved introduces uncertainty in interpretation of transient observations and future climate projections. Much research has focused on “parametric uncertainty,” particularly determining the exponent(s) of a power‐law relationship of sinking particle flux with depth. Varying this relationship's functional form introduces additional “structural uncertainty.” We use an ocean biogeochemistry model substituting six alternative remineralization profiles fit to a reference power‐law curve, to systematically characterize structural uncertainty, which, in atmospheric pCO₂ terms, is roughly 50% of parametric uncertainty associated with varying the power‐law exponent within its plausible global range, and similar to uncertainty associated with regional variation in power‐law exponents. The substantial contribution of structural uncertainty to total uncertainty highlights the need to improve characterization of biological pump processes, and compare the performance of different profiles within Earth System Models to obtain better constrained climate projections.
Date issued
2021-04Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Lauderdale, Jonathan Maitland and B. B. Cael. "Impact of Remineralization Profile Shape on the Air‐Sea Carbon Balance." Geophysical Research Letters 48, 7 (April 2021): e2020GL091746 © 2021 The Authors
Version: Final published version
ISSN
0094-8276
1944-8007