Show simple item record

dc.contributor.authorHasani, Ramin
dc.contributor.authorAmini, Alexander A
dc.contributor.authorLechner, Mathias
dc.contributor.authorNaser, Felix M
dc.contributor.authorGrosu, Radu
dc.contributor.authorRus, Daniela L
dc.date.accessioned2021-05-04T14:56:09Z
dc.date.available2021-05-04T14:56:09Z
dc.date.issued2019-09
dc.date.submitted2019-07
dc.identifier.isbn9781728119854
dc.identifier.issn2161-4407
dc.identifier.urihttps://hdl.handle.net/1721.1/130553
dc.description.abstractIn this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IJCNN.2019.8851954en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleResponse Characterization for Auditing Cell Dynamics in Long Short-term Memory Networksen_US
dc.typeArticleen_US
dc.identifier.citationHasani, Ramin et al. "Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks." 2019 International Joint Conference on Neural Networks, July 2019, Budapest, Hungary, Institute of Electrical and Electronics Engineers, September 2019. © 2019 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journal2019 International Joint Conference on Neural Networksen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-15T17:21:21Z
dspace.orderedauthorsHasani, R; Amini, A; Lechner, M; Naser, F; Grosu, R; Rus, Den_US
dspace.date.submission2021-04-15T17:21:23Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record