MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effectiveness of CubeSat-Based Architectures for Active Removal of On-Orbit Rocket Bodies

Author(s)
Clark, Christopher P.; Tan, Dun Y.; Arnal Luna, Patricia; Hastings, Daniel E.; Masterson, Rebecca A.; Ricard, Michael J.; ... Show more Show less
Thumbnail
DownloadAccepted version (503.8Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Recent events such as the 2009 Iridium-Cosmos collision and multiple anti-satellite weapon (ASAT) tests have propelled the increasingly urgent topic of space debris management to the forefront of current engineering inquiry. Simultaneously, the so-called “CubeSat Revolution” has significantly reduced barriers to entry for commercial and scientific space missions. Cube-Sats have demonstrated an ever-increasing potential to offer useful capabilities for a fraction of the size, mass, and power of their larger counterparts. This paper explores the relevance and effectiveness of CubeSat architectures in active space debris removal by propulsive methods. The chosen target of interest is the Zenit-2 second-stage rocket body, representative of a particularly large and prevalent family of debris objects. The debris removal mission design problem is approached from a fundamental level. First, the CubeSat architecture design tradespace is defined and outlined, including the proposed design vector, constraints, and objective function. Next, a system model and optimization methods are presented and implemented in MATLAB. Given a set of mission requirements, the algorithm arrives at an optimal or near-optimal architecture design by iterating through combinations of commercially available CubeSat components stored in a database. Results are examined for various deorbiter CubeSat designs, and key tradeoffs between architecture options are identified and explored. Finally, considering the optimized results, a discussion of the most effective propulsive solutions for Zenit-2 rocket body removal using CubeSat clusters is presented.
Date issued
2020-11
URI
https://hdl.handle.net/1721.1/130575
Department
Charles Stark Draper Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Accelerating Space Commerce, Exploration, and New Discovery Conference
Publisher
American Institute of Aeronautics and Astronautics
Citation
Clark, Christopher P. et al. "Effectiveness of CubeSat-Based Architectures for Active Removal of On-Orbit Rocket Bodies." Accelerating Space Commerce, Exploration, and New Discovery Conference, November 2020, virtual event, American Institute of Aeronautics and Astronautics, November 2020. © 2020 The Charles Stark Draper Laboratory, Inc
Version: Author's final manuscript
ISBN
9781624106088

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.