The Chow of S (inverted right perpendicular n inverted left perpendicular) and the universal subscheme
Author(s)
Negut, Andrei
DownloadAccepted version (333.4Kb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We prove that any element in the Chow ring of the Hilbert scheme Hilbn of n points on a smooth surface S is a universal class, i.e. the push-forward of a polynomial in the Chern classes of the universal subschemes on Hilb[subscript n] x S[superscript K] for some k ∈N, with coefficients pulled back from the Chow of S[superscript K].
Date issued
2020Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie
Publisher
Societatea de Științe Matematice din România
Citation
Negut, Andrei. "The Chow of S (inverted right perpendicular n inverted left perpendicular) and the universal subscheme." Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie 64, 3 (2020): 385-394.
Version: Author's final manuscript
ISSN
1220-3874