MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metasurface Matching Layers for Enhanced Electric Field Penetration Into the Human Body

Author(s)
Genovesi, Simone; Butterworth, Ian Richard; Cruz Serrallés, José E. (José Enrique); Daniel, Luca
Thumbnail
DownloadPublished version (1.411Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The use of electromagnetic fields applied to human tissues has proven to be beneficial in several applications, such as monitoring physiological parameters and delivering medical treatments. Often applications rely on targeted energy deposition into the tissue, or rely on wireless powering of implanted devices. In such cases, the system energy efficiency, the stability of the field, and ultimately the process safety could all benefit from minimizing the mismatch at the air-skin interface. In this article, the maximization of the electric field transmitted into the muscle tissue is initially addressed by optimizing a dielectric-only matching layer in terms of thickness and relative dielectric permittivity, and under realistic constraints on low-cost available materials. The propagation of the electromagnetic field inside a multilayered medium that represents the body is evaluated by using the wave-transmission chain matrix approach. Furthermore, an innovative solution, based on the application of a metasurface matching layer (MML), is proposed to significantly improve the performance of the matching, thus enhancing the electromagnetic fields reaching the targeted muscle tissue. A thorough assessment of the performance is carried out considering both the presence of an air gap, and the case of plane waves impinging at oblique incidence.
Date issued
2020-10
URI
https://hdl.handle.net/1721.1/130945
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Access
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Genovesi, Simone et al. "Metasurface Matching Layers for Enhanced Electric Field Penetration Into the Human Body." IEEE Access 8 (October 2020): 197745 - 197756.
Version: Final published version
ISSN
2169-3536

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.