Show simple item record

dc.contributor.authorHuang, Shao-Lun
dc.contributor.authorXu, Xiangxiang
dc.contributor.authorZheng, Lizhong
dc.contributor.authorWornell, Gregory W
dc.date.accessioned2021-06-16T21:57:44Z
dc.date.available2021-06-16T21:57:44Z
dc.date.issued2020-08
dc.date.submitted2020-06
dc.identifier.isbn9781728164328
dc.identifier.issn2157-8117
dc.identifier.urihttps://hdl.handle.net/1721.1/130992
dc.description.abstractWhile the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation and the Wyner common information share similar information processing purposes of extracting common knowledge structures between random variables, the relationships between these approaches are generally unclear. In this paper, we demonstrate such relationships by considering the Wyner common information in the weakly dependent regime, called ϵ-common information. We show that the HGR maximal correlation functions coincide with the relative likelihood functions of estimating the auxiliary random variables in ϵ-common information, which establishes the fundamental connections these approaches. Moreover, we extend the ϵ-common information to multiple random variables, and derive a novel algorithm for extracting feature functions of data variables regarding their common information. Our approach is validated by the MNIST problem, and can potentially be useful in multi-modal data analyses.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/isit44484.2020.9174206en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Zheng via Phoebe Ayersen_US
dc.titleA Local Characterization for Wyner Common Informationen_US
dc.typeArticleen_US
dc.identifier.citationHuang, Shao-Lun et al. "A Local Characterization for Wyner Common Information." 2020 IEEE International Symposium on Information Theory, June 2020, Los Angeles, CA, Institute of Electrical and Electronics Engineers, August 2020. © 2020 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journal2020 IEEE International Symposium on Information Theory (ISIT)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-06-16T15:49:56Z
dspace.orderedauthorsHuang, S-L; Xu, X; Zheng, L; Wornell, GWen_US
dspace.date.submission2021-06-16T15:49:57Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record