MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photonic topology optimization with semiconductor-foundry design-rule constraints

Author(s)
Hammond, Alec; Oskooi, Ardavan; Johnson, Steven G; Ralph, Stephen
Thumbnail
Downloadconstraint_paper (6).pdf (3.314Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a unified density-based topology-optimization framework that yields integrated photonic designs optimized for manufacturing constraints including all those of commercial semiconductor foundries. We introduce a new method to impose minimum-area and minimum-enclosed-area constraints, and simultaneously adapt previous techniques for minimum linewidth, linespacing, and curvature, all of which are implemented without any additional re-parameterizations. Furthermore, we show how differentiable morphological transforms can be used to produce devices that are robust to over/under-etching while also satisfying manufacturing constraints. We demonstrate our methodology by designing three broadband silicon-photonics devices for nine different foundry-constraint combinations.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/131097
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Optics Express
Publisher
The Optical Society
Citation
Hammond, Alec et al. "Photonic topology optimization with semiconductor-foundry design-rule constraints." Optics Express 29, 15 (June 2021): 23916-23938. © 2021 Optical Society of America
Version: Final published version
ISSN
1094-4087

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.