MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions

Author(s)
Filbin, Michael R.; Mehta, Arnav; Schneider, Alexis M.; Kays, Kyle R.; Guess, Jamey R.; Gentili, Matteo; Fenyves, Bánk G.; Charland, Nicole C.; Gonye, Anna L.K.; Gushterova, Irena; Khanna, Hargun K.; LaSalle, Thomas J.; Lavin-Parsons, Kendall M.; Lilley, Brendan M.; Lodenstein, Carl L.; Manakongtreecheep, Kasidet; Margolin, Justin D.; McKaig, Brenna N.; Rojas-Lopez, Maricarmen; Russo, Brian C.; Sharma, Nihaarika; Tantivit, Jessica; Thomas, Molly F.; Gerszten, Robert E.; Heimberg, Graham S.; Hoover, Paul J.; Lieb, David J.; Lin, Brian; Ngo, Debby; Pelka, Karin; Reyes, Miguel; Smillie, Chris S; Waghray, Avinash; Wood, Thomas E.; Zajac, Amanda S.; Jennings, Lori L.; Grundberg, Ida; Bhattacharyya, Roby P.; Parry, Blair Alden; Villani, Alexandra-Chloé; Sade-Feldman, Moshe; Hacohen, Nir; Goldberg, Marcia B.; ... Show more Show less
Thumbnail
DownloadPublished version (8.079Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.
Date issued
2021-05
URI
https://hdl.handle.net/1721.1/131124
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Broad Institute of MIT and Harvard
Journal
Cell Reports Medicine
Publisher
Elsevier BV
Citation
Filbin, Michael R. et al. "Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions." Cell Reports Medicine 2, 5 (May 2021): 100287 © 2021 The Authors
Version: Final published version
ISSN
2666-3791

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.