MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Measurement of Overpotential Sources during Anodic Gas Evolution in Aqueous and Molten Salt Systems

Author(s)
Chmielowiec, Brian John; Fujimura, Tatsuki; Otani, Tomohiro; Aoyama, Kiego; Nohira, Toshiyuki; Homma, Takayuki; Fukunaka, Yasuhiro; Allanore, Antoine; ... Show more Show less
Thumbnail
DownloadPublished version (957.8Kb)
Additional downloads
supplementary information (58.44Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Current interrupt and galvanostatic EIS techniques were utilized in a complementary fashion to characterize the different sources of overpotential during anodic gas evolution. Room temperature anodic evolution of oxygen at a nickel working electrode in aqueous potassium hydroxide and the high temperature (348°C) anodic evolution of chlorine at a glassy carbon working electrode in molten (LiCl)[subscript 57.5-](KCl)[subscript 13.3-](CsCl)[subscript 29.2 ] where investigatd. Combining of the two techniques enables to separate the total measured overpotential into its ohmic, charge transfer, and mass transfer components. Potential decay curves indicated that natural convection (due to both bubble evolution and density driven flow) was a major driving force in reestablishing equilibrium conditions at the working electrode surface. During oxygen evolution, charge transfer resistance dominated the total overpotential at low current densities, but as the current density approached ~100mA/cm[superscript 2], mass transfer overpotentials and ohmic overpotential became non-negligible. The mass transfer overpotential during chlorine evolution was found to be half that found during oxygen evolution.
Date issued
2019-06
URI
https://hdl.handle.net/1721.1/131147
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; MIT Materials Research Laboratory
Journal
Journal of The Electrochemical Society
Publisher
The Electrochemical Society
Citation
Chmielowiec, Brian John et al. "Experimental Measurement of Overpotential Sources during Anodic Gas Evolution in Aqueous and Molten Salt Systems." Journal of The Electrochemical Society 166, 10 (June 2019): E323. © 2019 The Author(s)
Version: Final published version
ISSN
0013-4651
1945-7111

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.