MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Surface Tension of High Temperature Liquids Evaluation with a Thermal Imaging Furnace

Author(s)
Wu, Mindy; Caldwell, Andrew Harvey; Allanore, Antoine
Thumbnail
DownloadAccepted version (476.3Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
At high temperature, the reactivity of liquid metals, salts, oxides, etc. often requires a container-less approach for studying composition-sensitive thermodynamic properties, such as component activities and surface tension. This experimental challenge limits access to essential properties, and therefore our understanding of molten systems. Herein, a thermal imaging furnace (TIF) is investigated as a mean of container-less study of molten materials via the formation of pendant drops. In situ optical characterization of a liquid metal drop is proposed through the use of a conventional digital camera. We report one possible method for measuring surface tension of molten systems using this pendant drop technique in conjunction with an image analysis procedure. Liquid copper was used to evaluate the efficacy of this method. The surface tension of liquid copper was calculated to be 1.159 ± 0.043 Nm -1 at 1084 ± 20 ˚C, in agreement with published values.
Date issued
2019
URI
https://hdl.handle.net/1721.1/131152
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; MIT Materials Research Laboratory
Journal
Advanced Real Time Imaging II
Publisher
Springer International Publishing
Citation
Wu, Mindy et al. "Surface Tension of High Temperature Liquids Evaluation with a Thermal Imaging Furnace." Advanced Real Time Imaging II, edited by Jinichiro Nakano, P. Chris Pistorius, Canden Tamerler, Hideyuki Yasuda, Zuotai Zhang, Neslihan Dogan, Wanlin Wang, Noritaka Saito and Bryan Webler, Springer, 2019, 33-41. © 2019 The Minerals, Metals & Materials Society
Version: Author's final manuscript
ISSN
2367-1181
2367-1696

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.