Show simple item record

dc.contributor.authorKoblan, Luke W.
dc.contributor.authorArbab, Mandana
dc.contributor.authorShen, Max Walt
dc.contributor.authorHussmann, Jeffrey A.
dc.contributor.authorAnzalone, Andrew V.
dc.contributor.authorDoman, Jordan L
dc.contributor.authorNewby, Gregory Arthur
dc.contributor.authorYang, Dian
dc.contributor.authorMok, Beverly
dc.contributor.authorReplogle, Joseph M.
dc.contributor.authorXu, Albert
dc.contributor.authorSisley, Tyler A.
dc.contributor.authorWeissman, Jonathan S.
dc.contributor.authorAdamson, Britt
dc.contributor.authorLiu, David R.
dc.date.accessioned2021-08-24T20:39:03Z
dc.date.available2021-08-24T20:39:03Z
dc.date.issued2021-06
dc.date.submitted2021-01
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttps://hdl.handle.net/1721.1/131196
dc.description.abstractProgrammable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, but their editing outcomes have proved difficult to predict and their editing efficiency and product purity are often low. We describe a suite of engineered CGBEs paired with machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPR interference (CRISPRi) screen targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained machine learning models that accurately predict the purity and yield of editing outcomes (R = 0.90) using these data. These CGBEs enable correction to the wild-type coding sequence of 546 disease-related transversion single-nucleotide variants (SNVs) with >90% precision (mean 96%) and up to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-single-guide RNA pairs enables high-purity transversion base editing at over fourfold more target sites than achieved using any single CGBE variant.en_US
dc.description.sponsorshipUS NIH (Grants F31NS115380, U01AI142756, UG3AI150551, RM1HG009490, R35GM118062, R35GM138167 and P30CA072720)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41587-021-00938-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceLuke Koblanen_US
dc.titleDevelopment of a set of C•G-to-G•C transversion base editors from CRISPRi screens, target-library analysis, and machine learningen_US
dc.title.alternativeEfficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learningen_US
dc.typeArticleen_US
dc.identifier.citationKoblan, Luke W. et al. "Development of a set of C•G-to-G•C transversion base editors from CRISPRi screens, target-library analysis, and machine learning." Nature Biotechnology (June 2021): dx.doi.org/10.1038/s41587-021-00938-z. © 2021 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-08-09T14:23:02Z
dspace.orderedauthorsKoblan, LW; Arbab, M; Shen, MW; Hussmann, JA; Anzalone, AV; Doman, JL; Newby, GA; Yang, D; Mok, B; Replogle, JM; Xu, A; Sisley, TA; Weissman, JS; Adamson, B; Liu, DRen_US
dspace.date.submission2021-08-09T14:23:06Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record