MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maximizing Performance of Quantum Cascade Laser-Pumped Molecular Lasers

Author(s)
Wang, Fan; Johnson, Steven G; Everitt, Henry O.
Thumbnail
DownloadPhysRevApplied.16.024010.pdf (1.581Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Quantum-cascade-laser- (QCL) pumped molecular lasers (QPMLs) have recently been introduced as a source of powerful (>1 mW) tunable (>1 THz) narrow-band (<10 kHz) continuous-wave terahertz radiation. The performance of these lasers depends critically on molecular collision physics, pump saturation, and on the design of the laser cavity. Using a validated three-level model that captures the essential collision and saturation behaviors of the QPML gas nitrous oxide (N₂O), we explore how the threshold pump power and output terahertz power depend on the pump power and gas pressure, as well as on the diameter, length, and output-coupler transmissivity of a cylindrical cavity. The analysis indicates that maximum power occurs as pump saturation is minimized in a manner that depends much more sensitively on pressure than on cell diameter, length, or transmissivity. A near-optimal compact laser cavity can produce tens of milliwatts of power tunable over frequencies above 1 THz when pumped by a multiwatt QCL.
Date issued
2021-08
URI
https://hdl.handle.net/1721.1/131198
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Physics
Journal
Physics Review Applied
Publisher
American Physical Society (APS)
Citation
Wang, Fan et al. "Maximizing Performance of Quantum Cascade Laser-Pumped Molecular Lasers." Physics Review Applied 16, 2 (August 2021): 024010. © 2021 American Physical Society
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.