Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data
Author(s)
Aartsen, M. G; Ackermann, M.; Adams, J.; Aguilar, J. A; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Backes, P.; Bagherpour, H.; Bai, X.; Barbano, A.; Barron, J. P; Barwick, S. W; Baum, V.; Bay, R.; Beatty, J. J; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S; Carver, T.; Chen, C.; Cheung, E.; Chirkin, D.; Clark, K.; Classen, L.; Collin, G. H; Conrad, J. M; Coppin, P.; Correa, P.; Cowen, D. F; Cross, R.; Dave, P.; Day, M.; de André, J. P A M; De Clercq, C.; DeLaunay, J. J; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati, P.; de Vries, K. D; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C; Dujmovic, H.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A; Fahey, S.; Fazely, A. R; Felde, J.; Filimonov, K.; Finley, C.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K; Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halve, L.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C; Hoffman, K. D; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S; Jeong, M.; Jero, K.; Jones, B. J P; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L; Kheirandish, A.; Kim, J.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L; Larson, M. J; Lauber, F.; Leonard, K.; Leuermann, M.; Liu, Q. R; Lohfink, E.; Mariscal, C. J L; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B M; Makino, Y.; Mancina, S.; Mariş, I. C; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W; Moulai, M.; Nagai, R.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C; Nygren, D. R; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; O’Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V; Peiffer, P.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Pizzuto, A.; Plum, M.; Price, P. B; Przybylski, G. T; Raab, C.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C; Reimann, R.; Relethford, B.; Renzi, G.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sanchez Herrera, S. E; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schaufel, M.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G; Stößl, A.; Strotjohann, N. L; Stuttard, T.; Sullivan, G. W; Sutherland, M.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Tobin, M. N; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F; Turcati, A.; Turcotte, R.; Turley, C. F; Ty, B.; Unger, E.; Unland Elorrieta, M. A; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D; Wandkowsky, N.; Watson, T. B; Weaver, C.; Weiss, M. J; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H; Wille, L.; Williams, D. R; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R; Woolsey, E.; Woschnagg, K.; Wrede, G.; Xu, D. L; Xu, X. W; Xu, Y.; Yanez, J. P; Yodh, G.; Yoshida, S.; Yuan, T.; ... Show more Show less
Download10052_2019_Article_6680.pdf (3.121Mb)
Terms of use
Metadata
Show full item recordAbstract
Abstract
The IceCube Collaboration has observed a high-energy astrophysical neutrino flux and recently found evidence for neutrino emission from the blazar TXS 0506
$$+$$
+
056. These results open a new window into the high-energy universe. However, the source or sources of most of the observed flux of astrophysical neutrinos remains uncertain. Here, a search for steady point-like neutrino sources is performed using an unbinned likelihood analysis. The method searches for a spatial accumulation of muon-neutrino events using the very high-statistics sample of about 497,000 neutrinos recorded by IceCube between 2009 and 2017. The median angular resolution is
$$\sim 1^\circ $$
∼
1
∘
at 1 TeV and improves to
$$\sim 0.3^\circ $$
∼
0
.
3
∘
for neutrinos with an energy of 1 PeV. Compared to previous analyses, this search is optimized for point-like neutrino emission with the same flux-characteristics as the observed astrophysical muon-neutrino flux and introduces an improved event-reconstruction and parametrization of the background. The result is an improvement in sensitivity to the muon-neutrino flux compared to the previous analysis of
$$\sim 35\%$$
∼
35
%
assuming an
$$E^{-2}$$
E
-
2
spectrum. The sensitivity on the muon-neutrino flux is at a level of
$$E^2 \mathrm {d} N /\mathrm {d} E = 3\cdot 10^{-13}\,\mathrm {TeV}\,\mathrm {cm}^{-2}\,\mathrm {s}^{-1}$$
E
2
d
N
/
d
E
=
3
·
10
-
13
TeV
cm
-
2
s
-
1
. No new evidence for neutrino sources is found in a full sky scan and in an a priori candidate source list that is motivated by gamma-ray observations. Furthermore, no significant excesses above background are found from populations of sub-threshold sources. The implications of the non-observation for potential source classes are discussed.
Date issued
2019-03Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Department of PhysicsJournal
The European Physical Journal C
Publisher
Springer Berlin Heidelberg
ISSN
1434-6044
1434-6052
Collections
The following license files are associated with this item: