MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calibrating the coevolution of Ediacaran life and environment

Author(s)
Rooney, Alan D.; Cantine, Marjorie Dianne; Bergmann, Kristin; Gómez-Pérez, Irene; Al Baloushi, Badar; Boag, Thomas H.; Busch, James F.; Sperling, Erik A.; Strauss, Justin V.; ... Show more Show less
Thumbnail
DownloadPublished version (1.272Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The rise of animals occurred during an interval of Earth history that witnessed dynamic marine redox conditions, potentially rapid plate motions, and uniquely large perturbations to global biogeochemical cycles. The largest of these perturbations, the Shuram carbon isotope excursion, has been invoked as a driving mechanism for Ediacaran environmental change, possibly linked with evolutionary innovation or extinction. However, there are a number of controversies surrounding the Shuram, including its timing, duration, and role in the concomitant biological and biogeochemical upheavals. Here we present radioisotopic dates bracketing the Shuram on two separate paleocontinents; our results are consistent with a global and synchronous event between 574.0 ± 4.7 and 567.3 ± 3.0 Ma. These dates support the interpretation that the Shuram is a primary and synchronous event postdating the Gaskiers glaciation. In addition, our Re-Os ages suggest that the appearance of Ediacaran macrofossils in northwestern Canada is identical, within uncertainty, to similar macrofossils from the Conception Group of Newfoundland, highlighting the coeval appearance of macroscopic metazoans across two paleocontinents. Our temporal framework for the terminal Proterozoic is a critical step for testing hypotheses related to extreme carbon isotope excursions and their role in the evolution of complex life.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/131287
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Citation
Rooney, Alan D. et al. "Calibrating the coevolution of Ediacaran life and environment." Proceedings of the National Academy of Sciences 117, 29 (July 2020): 16824-16830. © 2020 National Academy of Sciences
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.