MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating coupled finite element-kinetic Monte Carlo models: 200 $$\times $$ × speedup of shear transformation zone dynamics simulations

Author(s)
Hardin, Thomas J
Thumbnail
Download466_2018_1606_ReferencePDF.pdf (19.21Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Shear transformation zone dynamics models of metallic glass deformation access experimentally-relevant time scales by using the kinetic Monte Carlo method to simulate small, fast, often discrete events, while the finite element method calculates macroscopic shape change and continuum-level interactions within samples. The most time-consuming portion of these models is the finite element method calculation on each step. However, in cases where the finite element mesh geometry and element elastic properties do not change from step to step, the finite element stiffness matrix (and its Cholesky factors) from previous steps can be reused. This strategy improves the asymptotic complexity of these models and in practice accelerates their execution by nearly 200 $$\times $$ × . This enables simulation of larger samples in more reasonable time. A set of three-dimensional shear transformation zone dynamics simulations, with larger length scales than any currently in the literature, illustrates the utility of this approach.
Date issued
2018-07-21
URI
https://hdl.handle.net/1721.1/131295
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.