MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime

Author(s)
Mallamace, Francesco; Mensitieri, Giuseppe; Mallamace, Domenico; Salzano de Luna, Martina; Chen, Sow-Hsin
Thumbnail
Downloadijms-21-07269-v2.pdf (640.3Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Liquid water is considered to be a peculiar example of glass forming materials because of the possibility of giving rise to amorphous phases with different densities and of the thermodynamic anomalies that characterize its supercooled liquid phase. In the present work, literature data on the density of bulk liquid water are analyzed in a wide temperature-pressure range, also including the glass phases. A careful data analysis, which was performed on different density isobars, made in terms of thermodynamic response functions, like the thermal expansion <inline-formula><math display="inline"><semantics><msub><mi>&alpha;</mi><mi>P</mi></msub></semantics></math></inline-formula> and the specific heat differences <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>P</mi></msub><mo>&minus;</mo><msub><mi>C</mi><mi>V</mi></msub></mrow></semantics></math></inline-formula>, proves, exclusively from the experimental data, the thermodynamic consistence of the liquid-liquid transition hypothesis. The study confirms that supercooled bulk water is a mixture of two liquid &ldquo;phases&rdquo;, namely the high density (HDL) and the low density (LDL) liquids that characterize different regions of the water phase diagram. Furthermore, the <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>P</mi></msub><mo>&minus;</mo><msub><mi>C</mi><mi>V</mi></msub></mrow></semantics></math></inline-formula> isobars behaviors clearly support the existence of both a liquid&ndash;liquid transition and of a liquid&ndash;liquid critical point.
Date issued
2020-10-01
URI
https://hdl.handle.net/1721.1/131305
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
International Journal of Molecular Sciences 21 (19): 7269 (2020)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.