MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coastal Bacterial Community Response to Glacier Melting in the Western Antarctic Peninsula

Author(s)
Alcamán-Arias, María Estrella; Fuentes-Alburquenque, Sebastián; Vergara-Barros, Pablo; Cifuentes-Anticevic, Jerónimo; Verdugo, Josefa; Polz, Martin; Farías, Laura; Pedrós-Alió, Carlos; Díez, Beatriz; ... Show more Show less
Thumbnail
Downloadmicroorganisms-09-00088.pdf (2.584Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as <i>Polaribacter</i>, <i>Pseudoalteromonas</i> and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as <i>Flavobacterium</i> and <i>Polaromonas</i>, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.
Date issued
2021-01-01
URI
https://hdl.handle.net/1721.1/131310
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Microorganisms 9 (1): 88 (2021)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.